NetIntent: Leveraging Large Language Models for End-to-End Intent-Based SDN Automation (2507.14398v1)
Abstract: Intent-Based Networking (IBN) often leverages the programmability of Software-Defined Networking (SDN) to simplify network management. However, significant challenges remain in automating the entire pipeline, from user-specified high-level intents to device-specific low-level configurations. Existing solutions often rely on rigid, rule-based translators and fixed APIs, limiting extensibility and adaptability. By contrast, recent advances in LLMs offer a promising pathway that leverages natural language understanding and flexible reasoning. However, it is unclear to what extent LLMs can perform IBN tasks. To address this, we introduce IBNBench, a first-of-its-kind benchmarking suite comprising four novel datasets: Intent2Flow-ODL, Intent2Flow-ONOS, FlowConflict-ODL, and FlowConflict-ONOS. These datasets are specifically designed for evaluating LLMs performance in intent translation and conflict detection tasks within the industry-grade SDN controllers ODL and ONOS. Our results provide the first comprehensive comparison of 33 open-source LLMs on IBNBench and related datasets, revealing a wide range of performance outcomes. However, while these results demonstrate the potential of LLMs for isolated IBN tasks, integrating LLMs into a fully autonomous IBN pipeline remains unexplored. Thus, our second contribution is NetIntent, a unified and adaptable framework that leverages LLMs to automate the full IBN lifecycle, including translation, activation, and assurance within SDN systems. NetIntent orchestrates both LLM and non-LLM agents, supporting dynamic re-prompting and contextual feedback to robustly execute user-defined intents with minimal human intervention. Our implementation of NetIntent across both ODL and ONOS SDN controllers achieves a consistent and adaptive end-to-end IBN realization.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.