Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 86 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 14 tok/s Pro
GPT-4o 88 tok/s Pro
GPT OSS 120B 471 tok/s Pro
Kimi K2 207 tok/s Pro
2000 character limit reached

Causal Language Control in Multilingual Transformers via Sparse Feature Steering (2507.13410v1)

Published 17 Jul 2025 in cs.CL and cs.AI

Abstract: Deterministically controlling the target generation language of large multilingual LLMs remains a fundamental challenge, particularly in zero-shot settings where neither explicit language prompts nor fine-tuning are available. In this work, we investigate whether sparse autoencoder (SAE) features, previously shown to correlate with interpretable model behaviors, can be leveraged to steer the generated language of LLMs during inference. Leveraging pretrained SAEs on the residual streams of Gemma-2B and Gemma-9B, we identify features whose activations differ most significantly between English and four target languages: Chinese, Japanese, Spanish, and French. By modifying just a single SAE feature at one transformer layer, we achieve controlled language shifts with up to 90\% success, as measured by FastText language classification, while preserving semantic fidelity according to LaBSE (Language-Agnostic BERT Sentence Embedding) similarity. Our analysis reveals that language steering is most effective in mid-to-late transformer layers and is amplified by specific attention heads disproportionately associated with language-sensitive SAE features. These results demonstrate the promise of sparse feature steering as a lightweight and interpretable mechanism for controllable multilingual generation.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube