Base change of (Gorenstein) transpose, k-torsionfree modules, and quasi-faithfully flat extensions (2507.12219v1)
Abstract: Let $\varphi\colon R \rightarrow A$ be a finite ring homomorphism, where $R$ is a two-sided Noetherian ring, and let $M$ be a finitely generated left $A$-module. Under suitable homological conditions on $A$ over $R$, we establish a close relationship between the classical transpose of $M$ over $A$ and the Gorenstein transpose of a certain syzygy module of $M$ over $R$. As an application, for each integer $k>0$, we provide a sufficient condition under which $M$ is $k$-torsionfree over $A$ if and only if a certain syzygy of $M$ over $R$ is $k$-torsionfree over $R$, extending a result of Zhao. We introduce the notion of quasi-faithfully flat extensions and show that, under suitable assumptions, the extension closedness of the category of $k$-torsionfree modules over $R$ is equivalent to that over $A$. An application is an affirmative answer to a question posed by Zhao concerning quasi $k$-Gorensteiness, in the case where both $R$ and $A$ are Noetherian algebras. Finally, when $\varphi$ is a separable split Frobenius extension, it is proved that the category of $k$-torsionfree $R$-modules has finite representation type if and only if the same holds over $A$, with applications to skew group rings.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.