Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 63 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 11 tok/s Pro
GPT-5 High 10 tok/s Pro
GPT-4o 83 tok/s Pro
Kimi K2 139 tok/s Pro
GPT OSS 120B 438 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Enhancements to the IceCube Extremely High Energy Neutrino Selection using Graph & Transformer Based Neural Networks (2507.11774v1)

Published 15 Jul 2025 in astro-ph.HE

Abstract: KM3NeT has recently reported the detection of a very high-energy neutrino event, while IceCube has previously set upper limits on the differential neutrino flux above 100 PeV but has yet to observe a neutrino event with an energy comparable to that of the KM3NeT detection. To improve diffuse measurements above 10 PeV, we apply machine learning techniques to enhance atmospheric muon background rejection and directional reconstruction. We utilize a Graph Neural Network (GNN) to perform a classification task that distinguishes neutrinos from high-energy atmospheric muons. The method allows for the rejection of early hits from laterally spread, lower-energy muons in cosmic ray showers without relying on directional reconstruction as a prior. Additionally, a Transformer-based Neural Network is implemented for directional reconstruction. Unlike previous likelihood-based rapid reconstruction algorithms that assume a single muon track, this method makes no prior assumptions about event topology of the particle inside the detector. We demonstrate improved background rejection and reconstruction performance using machine learning techniques. Applications to the development of future Extremely High Energy (EHE) selections are also discussed.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube