Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 87 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 16 tok/s
GPT-5 High 18 tok/s Pro
GPT-4o 104 tok/s
GPT OSS 120B 459 tok/s Pro
Kimi K2 216 tok/s Pro
2000 character limit reached

A scalable quantum-neural hybrid variational algorithm for ground state estimation (2507.11002v1)

Published 15 Jul 2025 in quant-ph

Abstract: We propose the unitary variational quantum-neural hybrid eigensolver (U-VQNHE), which improves upon the original VQNHE by enforcing unitary neural transformations. The non-unitary nature of VQNHE causes normalization issues and divergence of the loss function during training, leading to exponential scaling of measurement overhead with qubit number. U-VQNHE resolves these issues, significantly reduces required measurements, and retains improved accuracy and stability over standard variational quantum eigensolvers.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.