Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 14 tok/s Pro
GPT-4o 90 tok/s Pro
Kimi K2 179 tok/s Pro
GPT OSS 120B 462 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

IoT Malware Network Traffic Detection using Deep Learning and GraphSAGE Models (2507.10758v1)

Published 14 Jul 2025 in cs.AI and cs.LG

Abstract: This paper intends to detect IoT malicious attacks through deep learning models and demonstrates a comprehensive evaluation of the deep learning and graph-based models regarding malicious network traffic detection. The models particularly are based on GraphSAGE, Bidirectional encoder representations from transformers (BERT), Temporal Convolutional Network (TCN) as well as Multi-Head Attention, together with Bidirectional Long Short-Term Memory (BI-LSTM) Multi-Head Attention and BI-LSTM and LSTM models. The chosen models demonstrated great performance to model temporal patterns and detect feature significance. The observed performance are mainly due to the fact that IoT system traffic patterns are both sequential and diverse, leaving a rich set of temporal patterns for the models to learn. Experimental results showed that BERT maintained the best performance. It achieved 99.94% accuracy rate alongside high precision and recall, F1-score and AUC-ROC score of 99.99% which demonstrates its capabilities through temporal dependency capture. The Multi-Head Attention offered promising results by providing good detection capabilities with interpretable results. On the other side, the Multi-Head Attention model required significant processing time like BI-LSTM variants. The GraphSAGE model achieved good accuracy while requiring the shortest training time but yielded the lowest accuracy, precision, and F1 score compared to the other models

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Youtube Logo Streamline Icon: https://streamlinehq.com