Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 76 tok/s
Gemini 2.5 Pro 58 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 81 tok/s Pro
Kimi K2 206 tok/s Pro
GPT OSS 120B 465 tok/s Pro
Claude Sonnet 4 35 tok/s Pro
2000 character limit reached

Boosting Multimodal Learning via Disentangled Gradient Learning (2507.10213v1)

Published 14 Jul 2025 in cs.CV

Abstract: Multimodal learning often encounters the under-optimized problem and may have worse performance than unimodal learning. Existing methods attribute this problem to the imbalanced learning between modalities and rebalance them through gradient modulation. However, they fail to explain why the dominant modality in multimodal models also underperforms that in unimodal learning. In this work, we reveal the optimization conflict between the modality encoder and modality fusion module in multimodal models. Specifically, we prove that the cross-modal fusion in multimodal models decreases the gradient passed back to each modality encoder compared with unimodal models. Consequently, the performance of each modality in the multimodal model is inferior to that in the unimodal model. To this end, we propose a disentangled gradient learning (DGL) framework to decouple the optimization of the modality encoder and modality fusion module in the multimodal model. DGL truncates the gradient back-propagated from the multimodal loss to the modality encoder and replaces it with the gradient from unimodal loss. Besides, DGL removes the gradient back-propagated from the unimodal loss to the modality fusion module. This helps eliminate the gradient interference between the modality encoder and modality fusion module while ensuring their respective optimization processes. Finally, extensive experiments on multiple types of modalities, tasks, and frameworks with dense cross-modal interaction demonstrate the effectiveness and versatility of the proposed DGL. Code is available at \href{https://github.com/shicaiwei123/ICCV2025-GDL}{https://github.com/shicaiwei123/ICCV2025-GDL}

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube