Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 90 tok/s
Gemini 2.5 Pro 29 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 17 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 195 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Inter2Former: Dynamic Hybrid Attention for Efficient High-Precision Interactive (2507.09612v1)

Published 13 Jul 2025 in cs.CV

Abstract: Interactive segmentation (IS) improves annotation efficiency by segmenting target regions from user prompts, with widespread applications in real-world scenarios. Current approaches face a critical trade-off: dense-token methods achieve superior accuracy and detail preservation but suffer from prohibitively slow processing on CPU devices, while the Segment Anything Model (SAM) advances the field with sparse prompt tokens for fast inference but compromises segmentation quality. In this paper, we propose Inter2Former to address this challenge by optimizing computation allocation in dense-token processing, which introduces four key enhancements. First, we propose Dynamic Prompt Embedding (DPE) that adaptively processes only regions of interest while avoiding additional overhead from background tokens. Second, we introduce Dynamic Hybrid Attention (DHA), which leverages previous segmentation masks to route tokens through either full attention (O(N2)) for boundary regions or our proposed efficient BSQ attention (O(N)) for non-boundary regions. Third, we develop Hybrid Mixture of Experts (HMoE), which applies similar adaptive computation strategies in FFN modules with CPU-optimized parallel processing. Finally, we present Dynamic Local Upsampling (DLU), a reverse operation of DPE, which localizes objects with a lightweight MLP and performs fine-grained upsampling only in detected regions. Experimental results on high-precision IS benchmarks demonstrate that Inter2Former achieves SOTA performance with high efficiency on CPU devices.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Youtube Logo Streamline Icon: https://streamlinehq.com

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube