Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 93 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 17 tok/s
GPT-5 High 14 tok/s Pro
GPT-4o 97 tok/s
GPT OSS 120B 455 tok/s Pro
Kimi K2 194 tok/s Pro
2000 character limit reached

Towards Interpretable Drug-Drug Interaction Prediction: A Graph-Based Approach with Molecular and Network-Level Explanations (2507.09173v1)

Published 12 Jul 2025 in cs.LG, cs.AI, and q-bio.MN

Abstract: Drug-drug interactions (DDIs) represent a critical challenge in pharmacology, often leading to adverse drug reactions with significant implications for patient safety and healthcare outcomes. While graph-based methods have achieved strong predictive performance, most approaches treat drug pairs independently, overlooking the complex, context-dependent interactions unique to drug pairs. Additionally, these models struggle to integrate biological interaction networks and molecular-level structures to provide meaningful mechanistic insights. In this study, we propose MolecBioNet, a novel graph-based framework that integrates molecular and biomedical knowledge for robust and interpretable DDI prediction. By modeling drug pairs as unified entities, MolecBioNet captures both macro-level biological interactions and micro-level molecular influences, offering a comprehensive perspective on DDIs. The framework extracts local subgraphs from biomedical knowledge graphs and constructs hierarchical interaction graphs from molecular representations, leveraging classical graph neural network methods to learn multi-scale representations of drug pairs. To enhance accuracy and interpretability, MolecBioNet introduces two domain-specific pooling strategies: context-aware subgraph pooling (CASPool), which emphasizes biologically relevant entities, and attention-guided influence pooling (AGIPool), which prioritizes influential molecular substructures. The framework further employs mutual information minimization regularization to enhance information diversity during embedding fusion. Experimental results demonstrate that MolecBioNet outperforms state-of-the-art methods in DDI prediction, while ablation studies and embedding visualizations further validate the advantages of unified drug pair modeling and multi-scale knowledge integration.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com