Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 90 tok/s
Gemini 2.5 Pro 29 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 17 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 195 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

From Classical Machine Learning to Emerging Foundation Models: Review on Multimodal Data Integration for Cancer Research (2507.09028v1)

Published 11 Jul 2025 in q-bio.QM and cs.AI

Abstract: Cancer research is increasingly driven by the integration of diverse data modalities, spanning from genomics and proteomics to imaging and clinical factors. However, extracting actionable insights from these vast and heterogeneous datasets remains a key challenge. The rise of foundation models (FMs) -- large deep-learning models pretrained on extensive amounts of data serving as a backbone for a wide range of downstream tasks -- offers new avenues for discovering biomarkers, improving diagnosis, and personalizing treatment. This paper presents a comprehensive review of widely adopted integration strategies of multimodal data to assist advance the computational approaches for data-driven discoveries in oncology. We examine emerging trends in ML and deep learning (DL), including methodological frameworks, validation protocols, and open-source resources targeting cancer subtype classification, biomarker discovery, treatment guidance, and outcome prediction. This study also comprehensively covers the shift from traditional ML to FMs for multimodal integration. We present a holistic view of recent FMs advancements and challenges faced during the integration of multi-omics with advanced imaging data. We identify the state-of-the-art FMs, publicly available multi-modal repositories, and advanced tools and methods for data integration. We argue that current state-of-the-art integrative methods provide the essential groundwork for developing the next generation of large-scale, pre-trained models poised to further revolutionize oncology. To the best of our knowledge, this is the first review to systematically map the transition from conventional ML to advanced FM for multimodal data integration in oncology, while also framing these developments as foundational for the forthcoming era of large-scale AI models in cancer research.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 2 posts and received 0 likes.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube