Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 99 tok/s
Gemini 2.5 Pro 55 tok/s Pro
GPT-5 Medium 23 tok/s
GPT-5 High 19 tok/s Pro
GPT-4o 108 tok/s
GPT OSS 120B 465 tok/s Pro
Kimi K2 179 tok/s Pro
2000 character limit reached

Multi-omic Prognosis of Alzheimer's Disease with Asymmetric Cross-Modal Cross-Attention Network (2507.08855v1)

Published 9 Jul 2025 in eess.IV, cs.CV, and cs.LG

Abstract: Alzheimer's Disease (AD) is an irreversible neurodegenerative disease characterized by progressive cognitive decline as its main symptom. In the research field of deep learning-assisted diagnosis of AD, traditional convolutional neural networks and simple feature concatenation methods fail to effectively utilize the complementary information between multimodal data, and the simple feature concatenation approach is prone to cause the loss of key information during the process of modal fusion. In recent years, the development of deep learning technology has brought new possibilities for solving the problem of how to effectively fuse multimodal features. This paper proposes a novel deep learning algorithm framework to assist medical professionals in AD diagnosis. By fusing medical multi-view information such as brain fluorodeoxyglucose positron emission tomography (PET), magnetic resonance imaging (MRI), genetic data, and clinical data, it can accurately detect the presence of AD, Mild Cognitive Impairment (MCI), and Cognitively Normal (CN). The innovation of the algorithm lies in the use of an asymmetric cross-modal cross-attention mechanism, which can effectively capture the key information features of the interactions between different data modal features. This paper compares the asymmetric cross-modal cross-attention mechanism with the traditional algorithm frameworks of unimodal and multimodal deep learning models for AD diagnosis, and evaluates the importance of the asymmetric cross-modal cross-attention mechanism. The algorithm model achieves an accuracy of 94.88% on the test set.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.