Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 90 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 20 tok/s
GPT-5 High 23 tok/s Pro
GPT-4o 93 tok/s
GPT OSS 120B 441 tok/s Pro
Kimi K2 212 tok/s Pro
2000 character limit reached

Agentic Large Language Models for Conceptual Systems Engineering and Design (2507.08619v1)

Published 11 Jul 2025 in cs.AI

Abstract: Early-stage engineering design involves complex, iterative reasoning, yet existing LLM workflows struggle to maintain task continuity and generate executable models. We evaluate whether a structured multi-agent system (MAS) can more effectively manage requirements extraction, functional decomposition, and simulator code generation than a simpler two-agent system (2AS). The target application is a solar-powered water filtration system as described in a cahier des charges. We introduce the Design-State Graph (DSG), a JSON-serializable representation that bundles requirements, physical embodiments, and Python-based physics models into graph nodes. A nine-role MAS iteratively builds and refines the DSG, while the 2AS collapses the process to a Generator-Reflector loop. Both systems run a total of 60 experiments (2 LLMs - Llama 3.3 70B vs reasoning-distilled DeepSeek R1 70B x 2 agent configurations x 3 temperatures x 5 seeds). We report a JSON validity, requirement coverage, embodiment presence, code compatibility, workflow completion, runtime, and graph size. Across all runs, both MAS and 2AS maintained perfect JSON integrity and embodiment tagging. Requirement coverage remained minimal (less than 20\%). Code compatibility peaked at 100\% under specific 2AS settings but averaged below 50\% for MAS. Only the reasoning-distilled model reliably flagged workflow completion. Powered by DeepSeek R1 70B, the MAS generated more granular DSGs (average 5-6 nodes) whereas 2AS mode-collapsed. Structured multi-agent orchestration enhanced design detail. Reasoning-distilled LLM improved completion rates, yet low requirements and fidelity gaps in coding persisted.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets