Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 77 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 178 tok/s Pro
GPT OSS 120B 385 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Using Large Language Models for Legal Decision-Making in Austrian Value-Added Tax Law: An Experimental Study (2507.08468v1)

Published 11 Jul 2025 in cs.CL

Abstract: This paper provides an experimental evaluation of the capability of LLMs to assist in legal decision-making within the framework of Austrian and European Union value-added tax (VAT) law. In tax consulting practice, clients often describe cases in natural language, making LLMs a prime candidate for supporting automated decision-making and reducing the workload of tax professionals. Given the requirement for legally grounded and well-justified analyses, the propensity of LLMs to hallucinate presents a considerable challenge. The experiments focus on two common methods for enhancing LLM performance: fine-tuning and retrieval-augmented generation (RAG). In this study, these methods are applied on both textbook cases and real-world cases from a tax consulting firm to systematically determine the best configurations of LLM-based systems and assess the legal-reasoning capabilities of LLMs. The findings highlight the potential of using LLMs to support tax consultants by automating routine tasks and providing initial analyses, although current prototypes are not ready for full automation due to the sensitivity of the legal domain. The findings indicate that LLMs, when properly configured, can effectively support tax professionals in VAT tasks and provide legally grounded justifications for decisions. However, limitations remain regarding the handling of implicit client knowledge and context-specific documentation, underscoring the need for future integration of structured background information.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Youtube Logo Streamline Icon: https://streamlinehq.com

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube