Optimal and Practical Batched Linear Bandit Algorithm (2507.08438v1)
Abstract: We study the linear bandit problem under limited adaptivity, known as the batched linear bandit. While existing approaches can achieve near-optimal regret in theory, they are often computationally prohibitive or underperform in practice. We propose \texttt{BLAE}, a novel batched algorithm that integrates arm elimination with regularized G-optimal design, achieving the minimax optimal regret (up to logarithmic factors in $T$) in both large-$K$ and small-$K$ regimes for the first time, while using only $O(\log\log T)$ batches. Our analysis introduces new techniques for batch-wise optimal design and refined concentration bounds. Crucially, \texttt{BLAE} demonstrates low computational overhead and strong empirical performance, outperforming state-of-the-art methods in extensive numerical evaluations. Thus, \texttt{BLAE} is the first algorithm to combine provable minimax-optimality in all regimes and practical superiority in batched linear bandits.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.