Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 12 tok/s Pro
GPT-4o 64 tok/s Pro
Kimi K2 160 tok/s Pro
GPT OSS 120B 452 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Towards AI-Native RAN: An Operator's Perspective of 6G Day 1 Standardization (2507.08403v1)

Published 11 Jul 2025 in cs.NI, cs.AI, cs.DC, cs.LG, cs.SY, and eess.SY

Abstract: Artificial Intelligence/Machine Learning (AI/ML) has become the most certain and prominent feature of 6G mobile networks. Unlike 5G, where AI/ML was not natively integrated but rather an add-on feature over existing architecture, 6G shall incorporate AI from the onset to address its complexity and support ubiquitous AI applications. Based on our extensive mobile network operation and standardization experience from 2G to 5G, this paper explores the design and standardization principles of AI-Native radio access networks (RAN) for 6G, with a particular focus on its critical Day 1 architecture, functionalities and capabilities. We investigate the framework of AI-Native RAN and present its three essential capabilities to shed some light on the standardization direction; namely, AI-driven RAN processing/optimization/automation, reliable AI lifecycle management (LCM), and AI-as-a-Service (AIaaS) provisioning. The standardization of AI-Native RAN, in particular the Day 1 features, including an AI-Native 6G RAN architecture, were proposed. For validation, a large-scale field trial with over 5000 5G-A base stations have been built and delivered significant improvements in average air interface latency, root cause identification, and network energy consumption with the proposed architecture and the supporting AI functions. This paper aims to provide a Day 1 framework for 6G AI-Native RAN standardization design, balancing technical innovation with practical deployment.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.