Global existence and boundedness in an attraction-repulsion chemotaxis system with nonlocal logistic source and sublinear productions (2507.08305v1)
Abstract: This paper deals with the following attraction-repulsion chemotaxis system with nonlocal logistic source and sublinear productions \begin{align} \left{ \begin{array}{rrll} &&u_t = d_1 \Delta u-\chi \nabla\cdot(uk \nabla v)+\xi \nabla\cdot(uk \nabla w)+ \mu um \left(1-\int_\Omega u(x,t)\dx\right),\hspace*{0.5cm} &x\in\Omega,\, t>0,\ &&v_t = d_2 \Delta v-\alpha v+f(u), &x\in\Omega,\, t>0,\ &&w_t = d_3 \Delta w-\beta w+f(u), &x\in\Omega,\, t>0,\ &&\frac{\partial u}{\partial\nu} = \frac{\partial v}{\partial\nu} = \frac{\partial w}{\partial\nu} = 0, &x\in\partial\Omega,\, t>0,\ &&u(x,0) = u_0, \quad v(x,0)=v_0, \quad w(x,0)=w_0,&x\in\Omega, \end{array} \right. \end{align} in an open, bounded domain $\Omega\subset\mathbb{R}n$, $n\geq 2$ with smooth boundary $\partial\Omega$. Assume the parameters $d_1$, $d_2$, $d_3$, $\chi$, $\xi$, $\alpha$, $\beta$ and $\mu$ are positive constants, initial data $(u_0, v_0, w_0)$ are nonnegative and the function $f(u)\leq K ul\in C1([0, \infty))$ for some $K, l>0$. Under appropriate conditions on the parameter $k$, $l$ and $m$ we show that the above problem admits a unique globally bounded classical solution. Further, to illustrate the analytical results, some of numerical examples are provided.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.