Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 92 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 98 tok/s Pro
Kimi K2 209 tok/s Pro
GPT OSS 120B 466 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Data-driven joint optimization of maintenance and spare parts provisioning: A distributionally robust approach (2507.08174v1)

Published 10 Jul 2025 in math.OC

Abstract: This paper investigates the joint optimization of condition-based maintenance and spare provisioning, incorporating insights obtained from sensor data. Prognostic models estimate components' remaining lifetime distributions (RLDs), which are integrated into an optimization model to coordinate maintenance and spare provisioning. The existing literature addressing this problem assumes that prognostic models provide accurate estimates of RLDs, thereby allowing a direct adoption of Stochastic Programming or Markov Decision Process methodologies. Nevertheless, this assumption often does not hold in practice since the estimated distributions can be inaccurate due to noisy sensors or scarcity of training data. To tackle this issue, we develop a Distributionally Robust Chance Constrained (DRCC) formulation considering general discrepancy-based ambiguity sets that capture potential distribution perturbations of the estimated RLDs. The proposed formulation admits a Mixed-Integer Linear Programming (MILP) reformulation, where explicit formulas are provided to simplify the general discrepancy-based ambiguity sets. Finally, for the numerical illustration, we test a type-$\infty$ Wasserstein ambiguity set and derive closed-form expressions for the parameters of the MILP reformulation. The efficacy of our methodology is showcased in a wind turbine case study, where the proposed DRCC formulation outperforms other benchmarks based on stochastic programming and robust optimization.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube