Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 91 tok/s
Gemini 2.5 Pro 58 tok/s Pro
GPT-5 Medium 29 tok/s
GPT-5 High 29 tok/s Pro
GPT-4o 102 tok/s
GPT OSS 120B 462 tok/s Pro
Kimi K2 181 tok/s Pro
2000 character limit reached

Exploring the Limits of Model Compression in LLMs: A Knowledge Distillation Study on QA Tasks (2507.07630v1)

Published 10 Jul 2025 in cs.CL and cs.LG

Abstract: LLMs have demonstrated outstanding performance across a range of NLP tasks, however, their computational demands hinder their deployment in real-world, resource-constrained environments. This work investigates the extent to which LLMs can be compressed using Knowledge Distillation (KD) while maintaining strong performance on Question Answering (QA) tasks. We evaluate student models distilled from the Pythia and Qwen2.5 families on two QA benchmarks, SQuAD and MLQA, under zero-shot and one-shot prompting conditions. Results show that student models retain over 90% of their teacher models' performance while reducing parameter counts by up to 57.1%. Furthermore, one-shot prompting yields additional performance gains over zero-shot setups for both model families. These findings underscore the trade-off between model efficiency and task performance, demonstrating that KD, combined with minimal prompting, can yield compact yet capable QA systems suitable for resource-constrained applications.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.