Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 95 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 15 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 90 tok/s Pro
GPT OSS 120B 449 tok/s Pro
Kimi K2 192 tok/s Pro
2000 character limit reached

Simple Convergence Proof of Adam From a Sign-like Descent Perspective (2507.05966v1)

Published 8 Jul 2025 in cs.LG and cs.AI

Abstract: Adam is widely recognized as one of the most effective optimizers for training deep neural networks (DNNs). Despite its remarkable empirical success, its theoretical convergence analysis remains unsatisfactory. Existing works predominantly interpret Adam as a preconditioned stochastic gradient descent with momentum (SGDM), formulated as $\bm{x}{t+1} = \bm{x}_t - \frac{\gamma_t}{{\sqrt{\bm{v}_t}+\epsilon}} \circ \bm{m}_t$. This perspective necessitates strong assumptions and intricate techniques, resulting in lengthy and opaque convergence proofs that are difficult to verify and extend. In contrast, we propose a novel interpretation by treating Adam as a sign-like optimizer, expressed as $\bm{x}{t+1} = \bm{x}_t - \gamma_t \frac{|\bm{m}_t|}{{\sqrt{\bm{v}_t}+\epsilon}} \circ {\rm Sign}(\bm{m}_t)$. This reformulation significantly simplifies the convergence analysis. For the first time, with some mild conditions, we prove that Adam achieves the optimal rate of ${\cal O}(\frac{1}{T{\sfrac{1}{4}}})$ rather than the previous ${\cal O} \left(\frac{\ln T}{T{\sfrac{1}{4}}}\right)$ under weak assumptions of the generalized $p$-affine variance and $(L_0, L_1, q)$-smoothness, without dependence on the model dimensionality or the numerical stability parameter $\epsilon$. Additionally, our theoretical analysis provides new insights into the role of momentum as a key factor ensuring convergence and offers practical guidelines for tuning learning rates in Adam, further bridging the gap between theory and practice.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube