Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 95 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 95 tok/s Pro
GPT OSS 120B 391 tok/s Pro
Kimi K2 159 tok/s Pro
2000 character limit reached

On Araki-Type Trace Inequalities (2507.05242v1)

Published 7 Jul 2025 in math-ph, math.FA, math.MP, and quant-ph

Abstract: In this paper, we prove a trace inequality $\text{Tr}[ f(A) As Bs ] \leq \text{Tr}[ f(A) (A{1/2} B A{1/2} )s ]$ for any positive and monotone increasing function $f$, $s\in[0,1]$, and positive semi-definite matrices $A$ and $B$. On the other hand, for $s\in[0,1]$ such that the map $x\mapsto xs g(x)$ is positive and decreasing, then $ \text{Tr}[ g(A) (A{1/2} B A{1/2} )s ] \leq \text{Tr}[ g(A) As Bs ]$.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.