Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 44 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 208 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Covariance test for discretely observed functional data: when and how it works? (2507.04962v1)

Published 7 Jul 2025 in stat.ME

Abstract: For covariance test in functional data analysis, existing methods are developed only for fully observed curves, whereas in practice, trajectories are typically observed discretely and with noise. To bridge this gap, we employ a pool-smoothing strategy to construct an FPC-based test statistic, allowing the number of estimated eigenfunctions to grow with the sample size. This yields a consistently nonparametric test, while the challenge arises from the concurrence of diverging truncation and discretized observations. Facilitated by advancing perturbation bounds of estimated eigenfunctions, we establish that the asymptotic null distribution remains valid across permissable truncation levels. Moreover, when the sampling frequency (i.e., the number of measurements per subject) reaches certain magnitude of sample size, the test behaves as if the functions were fully observed. This phase transition phenomenon differs from the well-known result of the pooling mean/covariance estimation, reflecting the elevated difficulty in covariance test due to eigen-decomposition. The numerical studies, including simulations and real data examples, yield favorable performance compared to existing methods.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube