Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 43 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 96 tok/s Pro
Kimi K2 197 tok/s Pro
GPT OSS 120B 455 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

A cautionary tale of model misspecification and identifiability (2507.04894v1)

Published 7 Jul 2025 in stat.ME and q-bio.QM

Abstract: Mathematical models are routinely applied to interpret biological data, with common goals that include both prediction and parameter estimation. A challenge in mathematical biology, in particular, is that models are often complex and non-identifiable, while data are limited. Rectifying identifiability through simplification can seemingly yield more precise parameter estimates, albeit, as we explore in this perspective, at the potentially catastrophic cost of introducing model misspecification and poor accuracy. We demonstrate how uncertainty in model structure can be propagated through to uncertainty in parameter estimates using a semi-parametric Gaussian process approach that delineates parameters of interest from uncertainty in model terms. Specifically, we study generalised logistic growth with an unknown crowding function, and a spatially resolved process described by a partial differential equation with a time-dependent diffusivity parameter. Allowing for structural model uncertainty yields more robust and accurate parameter estimates, and a better quantification of remaining uncertainty. We conclude our perspective by discussing the connections between identifiability and model misspecification, and alternative approaches to dealing with model misspecification in mathematical biology.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com