Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 45 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 183 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Word stress in self-supervised speech models: A cross-linguistic comparison (2507.04738v1)

Published 7 Jul 2025 in cs.CL and cs.AI

Abstract: In this paper we study word stress representations learned by self-supervised speech models (S3M), specifically the Wav2vec 2.0 model. We investigate the S3M representations of word stress for five different languages: Three languages with variable or lexical stress (Dutch, English and German) and two languages with fixed or demarcative stress (Hungarian and Polish). We train diagnostic stress classifiers on S3M embeddings and show that they can distinguish between stressed and unstressed syllables in read-aloud short sentences with high accuracy. We also tested language-specificity effects of S3M word stress. The results indicate that the word stress representations are language-specific, with a greater difference between the set of variable versus the set of fixed stressed languages.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.