Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 82 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 18 tok/s
GPT-5 High 12 tok/s Pro
GPT-4o 96 tok/s
GPT OSS 120B 467 tok/s Pro
Kimi K2 217 tok/s Pro
2000 character limit reached

An Improved Inference for IV Regressions (2506.23816v1)

Published 30 Jun 2025 in econ.EM

Abstract: Researchers often report empirical results that are based on low-dimensional IVs, such as the shift-share IV, together with many IVs. Could we combine these results in an efficient way and take advantage of the information from both sides? In this paper, we propose a combination inference procedure to solve the problem. Specifically, we consider a linear combination of three test statistics: a standard cluster-robust Wald statistic based on the low-dimensional IVs, a leave-one-cluster-out Lagrangian Multiplier (LM) statistic, and a leave-one-cluster-out Anderson-Rubin (AR) statistic. We first establish the joint asymptotic normality of the Wald, LM, and AR statistics and derive the corresponding limit experiment under local alternatives. Then, under the assumption that at least the low-dimensional IVs can strongly identify the parameter of interest, we derive the optimal combination test based on the three statistics and establish that our procedure leads to the uniformly most powerful (UMP) unbiased test among the class of tests considered. In particular, the efficiency gain from the combined test is of ``free lunch" in the sense that it is always at least as powerful as the test that is only based on the low-dimensional IVs or many IVs.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com