Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 89 tok/s
Gemini 2.5 Pro 43 tok/s Pro
GPT-5 Medium 24 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 112 tok/s Pro
Kimi K2 199 tok/s Pro
GPT OSS 120B 449 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

What Makes ChatGPT Effective for Software Issue Resolution? An Empirical Study of Developer-ChatGPT Conversations in GitHub (2506.22390v1)

Published 27 Jun 2025 in cs.SE

Abstract: Conversational large-LLMs are extensively used for issue resolution tasks. However, not all developer-LLM conversations are useful for effective issue resolution. In this paper, we analyze 686 developer-ChatGPT conversations shared within GitHub issue threads to identify characteristics that make these conversations effective for issue resolution. First, we analyze the conversations and their corresponding issues to distinguish helpful from unhelpful conversations. We begin by categorizing the types of tasks developers seek help with to better understand the scenarios in which ChatGPT is most effective. Next, we examine a wide range of conversational, project, and issue-related metrics to uncover factors associated with helpful conversations. Finally, we identify common deficiencies in unhelpful ChatGPT responses to highlight areas that could inform the design of more effective developer-facing tools. We found that only 62% of the ChatGPT conversations were helpful for successful issue resolution. ChatGPT is most effective for code generation and tools/libraries/APIs recommendations, but struggles with code explanations. Helpful conversations tend to be shorter, more readable, and exhibit stronger semantic and linguistic alignment. Larger, more popular projects and more experienced developers benefit more from ChatGPT. At the issue level, ChatGPT performs best on simpler problems with limited developer activity and faster resolution, typically well-scoped tasks like compilation errors. The most common deficiencies in unhelpful ChatGPT responses include incorrect information and lack of comprehensiveness. Our findings have wide implications including guiding developers on effective interaction strategies for issue resolution, informing the development of tools or frameworks to support optimal prompt design, and providing insights on fine-tuning LLMs for issue resolution tasks.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 post and received 0 likes.