Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 75 tok/s
Gemini 2.5 Pro 55 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 113 tok/s Pro
Kimi K2 196 tok/s Pro
GPT OSS 120B 459 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Linear-Quadratic Discrete-Time Dynamic Games with Unknown Dynamics (2506.22073v1)

Published 27 Jun 2025 in eess.SY, cs.SY, and math.OC

Abstract: Considering linear-quadratic discrete-time games with unknown input/output/state (i/o/s) dynamics and state, we provide necessary and sufficient conditions for the existence and uniqueness of feedback Nash equilibria (FNE) in the finite-horizon game, based entirely on offline input/output data. We prove that the finite-horizon unknown-dynamics game and its corresponding known-dynamics game have the same FNEs, and provide detailed relationships between their respective FNE matrices. To simplify the computation of FNEs, we provide an invertibility condition and a corresponding algorithm that computes one FNE by solving a finite number of linear equation systems using offline data. For the infinite-horizon unknown-dynamics game, limited offline data restricts players to computing optimal strategies only over a finite horizon. We prove that the finite-horizon strategy ``watching $T$ steps into the future and moving one step now,'' which is commonly used in classical optimal control, exhibits convergence in both the FNE matrices and the total costs in the infinite-horizon unknown-dynamics game, and further provide an analysis of the convergence rate of the total cost. The corresponding algorithm for the infinite-horizon game is proposed and its efficacy is demonstrated through a non-scalar numerical example.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.