Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 78 tok/s
Gemini 2.5 Pro 43 tok/s Pro
GPT-5 Medium 23 tok/s
GPT-5 High 29 tok/s Pro
GPT-4o 93 tok/s
GPT OSS 120B 470 tok/s Pro
Kimi K2 183 tok/s Pro
2000 character limit reached

Portable High-Performance Kernel Generation for a Computational Fluid Dynamics Code with DaCe (2506.20994v1)

Published 26 Jun 2025 in cs.DC and cs.PF

Abstract: With the emergence of new high-performance computing (HPC) accelerators, such as Nvidia and AMD GPUs, efficiently targeting diverse hardware architectures has become a major challenge for HPC application developers. The increasing hardware diversity in HPC systems often necessitates the development of architecture-specific code, hindering the sustainability of large-scale scientific applications. In this work, we leverage DaCe, a data-centric parallel programming framework, to automate the generation of high-performance kernels. DaCe enables automatic code generation for multicore processors and various accelerators, reducing the burden on developers who would otherwise need to rewrite code for each new architecture. Our study demonstrates DaCe's capabilities by applying its automatic code generation to a critical computational kernel used in Computational Fluid Dynamics (CFD). Specifically, we focus on Neko, a Fortran-based solver that employs the spectral-element method, which relies on small tensor operations. We detail the formulation of this computational kernel using DaCe's Stateful Dataflow Multigraph (SDFG) representation and discuss how this approach facilitates high-performance code generation. Additionally, we outline the workflow for seamlessly integrating DaCe's generated code into the Neko solver. Our results highlight the portability and performance of the generated code across multiple platforms, including Nvidia GH200, Nvidia A100, and AMD MI250X GPUs, with competitive performance results. By demonstrating the potential of automatic code generation, we emphasise the feasibility of using portable solutions to ensure the long-term sustainability of large-scale scientific applications.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.