Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 84 tok/s
Gemini 2.5 Pro 37 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 86 tok/s Pro
GPT OSS 120B 468 tok/s Pro
Kimi K2 229 tok/s Pro
2000 character limit reached

MDSAM:Memory-Driven Sparse Attention Matrix for LVLMs Hallucination Mitigation (2506.17664v1)

Published 21 Jun 2025 in cs.CV

Abstract: Hallucinations in large vision-LLMs (LVLMs) often stem from the model's sensitivity to image tokens during decoding, as evidenced by attention peaks observed when generating both real and hallucinated entities. To address this, we propose Memory-Driven Sparse Attention Matrix (MDSAM) , a novel training-free approach that dynamically captures and refines the attention allocated to image tokens at each layer. MDSAM memorizes attention patterns and activates updates through alignment during decoding, enhancing focus on relevant image tokens while effectively reducing hallucinations. We evaluate MDSAM on multiple benchmarks for tasks such as image captioning and visual question answering, demonstrating its ability to consistently reduce hallucinations and improve reliability. Compatible with various LVLM architectures, MDSAM highlights its adaptability and effectiveness in mitigating hallucinations without requiring additional training or external tools.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.