Does Multimodal Large Language Model Truly Unlearn? Stealthy MLLM Unlearning Attack (2506.17265v1)
Abstract: Multimodal LLMs (MLLMs) trained on massive data may memorize sensitive personal information and photos, posing serious privacy risks. To mitigate this, MLLM unlearning methods are proposed, which fine-tune MLLMs to reduce the ``forget'' sensitive information. However, it remains unclear whether the knowledge has been truly forgotten or just hidden in the model. Therefore, we propose to study a novel problem of LLM unlearning attack, which aims to recover the unlearned knowledge of an unlearned LLM. To achieve the goal, we propose a novel framework Stealthy Unlearning Attack (SUA) framework that learns a universal noise pattern. When applied to input images, this noise can trigger the model to reveal unlearned content. While pixel-level perturbations may be visually subtle, they can be detected in the semantic embedding space, making such attacks vulnerable to potential defenses. To improve stealthiness, we introduce an embedding alignment loss that minimizes the difference between the perturbed and denoised image embeddings, ensuring the attack is semantically unnoticeable. Experimental results show that SUA can effectively recover unlearned information from MLLMs. Furthermore, the learned noise generalizes well: a single perturbation trained on a subset of samples can reveal forgotten content in unseen images. This indicates that knowledge reappearance is not an occasional failure, but a consistent behavior.