Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 81 tok/s
Gemini 2.5 Pro 45 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 145 tok/s Pro
GPT OSS 120B 446 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Unpacking Generative AI in Education: Computational Modeling of Teacher and Student Perspectives in Social Media Discourse (2506.16412v1)

Published 19 Jun 2025 in cs.SI, cs.CL, and cs.CY

Abstract: Generative AI (GAI) technologies are quickly reshaping the educational landscape. As adoption accelerates, understanding how students and educators perceive these tools is essential. This study presents one of the most comprehensive analyses to date of stakeholder discourse dynamics on GAI in education using social media data. Our dataset includes 1,199 Reddit posts and 13,959 corresponding top-level comments. We apply sentiment analysis, topic modeling, and author classification. To support this, we propose and validate a modular framework that leverages prompt-based LLMs for analysis of online social discourse, and we evaluate this framework against classical NLP models. Our GPT-4o pipeline consistently outperforms prior approaches across all tasks. For example, it achieved 90.6% accuracy in sentiment analysis against gold-standard human annotations. Topic extraction uncovered 12 latent topics in the public discourse with varying sentiment and author distributions. Teachers and students convey optimism about GAI's potential for personalized learning and productivity in higher education. However, key differences emerged: students often voice distress over false accusations of cheating by AI detectors, while teachers generally express concern about job security, academic integrity, and institutional pressures to adopt GAI tools. These contrasting perspectives highlight the tension between innovation and oversight in GAI-enabled learning environments. Our findings suggest a need for clearer institutional policies, more transparent GAI integration practices, and support mechanisms for both educators and students. More broadly, this study demonstrates the potential of LLM-based frameworks for modeling stakeholder discourse within online communities.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.