Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 84 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 96 tok/s Pro
GPT OSS 120B 462 tok/s Pro
Kimi K2 189 tok/s Pro
2000 character limit reached

CutReg: A loss regularizer for enhancing the scalability of QML via adaptive circuit cutting (2506.14858v1)

Published 17 Jun 2025 in quant-ph and cs.LG

Abstract: Whether QML can offer a transformative advantage remains an open question. The severe constraints of NISQ hardware, particularly in circuit depth and connectivity, hinder both the validation of quantum advantage and the empirical investigation of major obstacles like barren plateaus. Circuit cutting techniques have emerged as a strategy to execute larger quantum circuits on smaller, less connected hardware by dividing them into subcircuits. However, this partitioning increases the number of samples needed to estimate the expectation value accurately through classical post-processing compared to estimating it directly from the full circuit. This work introduces a novel regularization term into the QML optimization process, directly penalizing the overhead associated with sampling. We demonstrate that this approach enables the optimizer to balance the advantages of gate cutting against the optimization of the typical ML cost function. Specifically, it navigates the trade-off between minimizing the cutting overhead and maintaining the overall accuracy of the QML model, paving the way to study larger complex problems in pursuit of quantum advantage.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.