Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
131 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

EnhanceGraph: A Continuously Enhanced Graph-based Index for High-dimensional Approximate Nearest Neighbor Search (2506.13144v2)

Published 16 Jun 2025 in cs.DB

Abstract: Recently, Approximate Nearest Neighbor Search in high-dimensional vector spaces has garnered considerable attention due to the rapid advancement of deep learning techniques. We observed that a substantial amount of search and construction logs are generated throughout the lifespan of a graph-based index. However, these two types of valuable logs are not fully exploited due to the static nature of existing indexes. We present the EnhanceGraph framework, which integrates two types of logs into a novel structure called a conjugate graph. The conjugate graph is then used to improve search quality. Through theoretical analyses and observations of the limitations of graph-based indexes, we propose several optimization methods. For the search logs, the conjugate graph stores the edges from local optima to global optima to enhance routing to the nearest neighbor. For the construction logs, the conjugate graph stores the pruned edges from the proximity graph to enhance retrieving of k nearest neighbors. Our experimental results on several public and real-world industrial datasets show that EnhanceGraph significantly improves search accuracy with the greatest improvement on recall from 41.74% to 93.42%, but does not sacrifices search efficiency. In addition, our EnhanceGraph algorithm has been integrated into Ant Group's open-source vector library, VSAG.

Summary

We haven't generated a summary for this paper yet.