Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 100 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 33 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 200 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Graph-based RAG Enhancement via Global Query Disambiguation and Dependency-Aware Reranking (2506.11106v1)

Published 7 Jun 2025 in cs.CL, cs.AI, and cs.IR

Abstract: Contemporary graph-based retrieval-augmented generation (RAG) methods typically begin by extracting entities from user queries and then leverage pre-constructed knowledge graphs to retrieve related relationships and metadata. However, this pipeline's exclusive reliance on entity-level extraction can lead to the misinterpretation or omission of latent yet critical information and relations. As a result, retrieved content may be irrelevant or contradictory, and essential knowledge may be excluded, exacerbating hallucination risks and degrading the fidelity of generated responses. To address these limitations, we introduce PankRAG, a framework that combines a globally aware, hierarchical query-resolution strategy with a novel dependency-aware reranking mechanism. PankRAG first constructs a multi-level resolution path that captures both parallel and sequential interdependencies within a query, guiding LLMs through structured reasoning. It then applies its dependency-aware reranker to exploit the dependency structure among resolved sub-questions, enriching and validating retrieval results for subsequent sub-questions. Empirical evaluations demonstrate that PankRAG consistently outperforms state-of-the-art approaches across multiple benchmarks, underscoring its robustness and generalizability.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.