Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 64 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

A Navigation Framework Utilizing Vision-Language Models (2506.10172v1)

Published 11 Jun 2025 in cs.RO, cs.AI, and cs.CV

Abstract: Vision-and-Language Navigation (VLN) presents a complex challenge in embodied AI, requiring agents to interpret natural language instructions and navigate through visually rich, unfamiliar environments. Recent advances in large vision-LLMs (LVLMs), such as CLIP and Flamingo, have significantly improved multimodal understanding but introduced new challenges related to computational cost and real-time deployment. In this project, we propose a modular, plug-and-play navigation framework that decouples vision-language understanding from action planning. By integrating a frozen vision-LLM, Qwen2.5-VL-7B-Instruct, with lightweight planning logic, we aim to achieve flexible, fast, and adaptable navigation without extensive model fine-tuning. Our framework leverages prompt engineering, structured history management, and a two-frame visual input strategy to enhance decision-making continuity across navigation steps. We evaluate our system on the Room-to-Room benchmark within the VLN-CE setting using the Matterport3D dataset and Habitat-Lab simulation environment. Although our initial results reveal challenges in generalizing to unseen environments under strict evaluation settings, our modular approach lays a foundation for scalable and efficient navigation systems, highlighting promising directions for future improvement through enhanced environmental priors and expanded multimodal input integration.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (2)

X Twitter Logo Streamline Icon: https://streamlinehq.com