Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 79 tok/s
Gemini 2.5 Pro 30 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 116 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 468 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Foundation Model Empowered Synesthesia of Machines (SoM): AI-native Intelligent Multi-Modal Sensing-Communication Integration (2506.07647v1)

Published 9 Jun 2025 in eess.SP

Abstract: To support future intelligent multifunctional sixth-generation (6G) wireless communication networks, Synesthesia of Machines (SoM) is proposed as a novel paradigm for AI-native intelligent multi-modal sensing-communication integration. However, existing SoM system designs rely on task-specific AI models and face challenges such as scarcity of massive high-quality datasets, constrained modeling capability, poor generalization, and limited universality. Recently, foundation models (FMs) have emerged as a new deep learning paradigm and have been preliminarily applied to SoM-related tasks, but a systematic design framework is still lacking. In this paper, we for the first time present a systematic categorization of FMs for SoM system design, dividing them into general-purpose FMs, specifically LLMs, and SoM domain-specific FMs, referred to as wireless foundation models. Furthermore, we derive key characteristics of FMs in addressing existing challenges in SoM systems and propose two corresponding roadmaps, i.e., LLM-based and wireless foundation model-based design. For each roadmap, we provide a framework containing key design steps as a guiding pipeline and several representative case studies of FM-empowered SoM system design. Specifically, we propose LLM-based path loss generation (LLM4PG) and scatterer generation (LLM4SG) schemes, and wireless channel foundation model (WiCo) for SoM mechanism exploration, LLM-based wireless multi-task SoM transceiver (LLM4WM) and wireless foundation model (WiFo) for SoM-enhanced transceiver design, and wireless cooperative perception foundation model (WiPo) for SoM-enhanced cooperative perception, demonstrating the significant superiority of FMs over task-specific models. Finally, we summarize and highlight potential directions for future research.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube