Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 91 tok/s
Gemini 2.5 Pro 56 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 108 tok/s Pro
Kimi K2 214 tok/s Pro
GPT OSS 120B 470 tok/s Pro
Claude Sonnet 4 40 tok/s Pro
2000 character limit reached

Data-Driven High-Dimensional Statistical Inference with Generative Models (2506.06438v1)

Published 6 Jun 2025 in hep-ph, hep-ex, and stat.ML

Abstract: Crucial to many measurements at the LHC is the use of correlated multi-dimensional information to distinguish rare processes from large backgrounds, which is complicated by the poor modeling of many of the crucial backgrounds in Monte Carlo simulations. In this work, we introduce HI-SIGMA, a method to perform unbinned high-dimensional statistical inference with data-driven background distributions. In contradistinction to many applications of Simulation Based Inference in High Energy Physics, HI-SIGMA relies on generative ML models, rather than classifiers, to learn the signal and background distributions in the high-dimensional space. These ML models allow for efficient, interpretable inference while also incorporating model errors and other sources of systematic uncertainties. We showcase this methodology on a simplified version of a di-Higgs measurement in the $bb\gamma\gamma$ final state, where the di-photon resonance allows for efficient background interpolation from sidebands into the signal region. We demonstrate that HI-SIGMA provides improved sensitivity as compared to standard classifier-based methods, and that systematic uncertainties can be straightforwardly incorporated by extending methods which have been used for histogram based analyses.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (2)