Template-Guided 3D Molecular Pose Generation via Flow Matching and Differentiable Optimization (2506.06305v1)
Abstract: Predicting the 3D conformation of small molecules within protein binding sites is a key challenge in drug design. When a crystallized reference ligand (template) is available, it provides geometric priors that can guide 3D pose prediction. We present a two-stage method for ligand conformation generation guided by such templates. In the first stage, we introduce a molecular alignment approach based on flow-matching to generate 3D coordinates for the ligand, using the template structure as a reference. In the second stage, a differentiable pose optimization procedure refines this conformation based on shape and pharmacophore similarities, internal energy, and, optionally, the protein binding pocket. We evaluate our approach on a new benchmark of ligand pairs co-crystallized with the same target and show that it outperforms standard docking tools and open-access alignment methods, especially in cases involving low similarity to the template or high ligand flexibility.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.