Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 94 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 31 tok/s Pro
GPT-5 High 38 tok/s Pro
GPT-4o 102 tok/s Pro
Kimi K2 207 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

On the Benefits of Accelerated Optimization in Robust and Private Estimation (2506.03044v1)

Published 3 Jun 2025 in math.ST, cs.LG, stat.ML, and stat.TH

Abstract: We study the advantages of accelerated gradient methods, specifically based on the Frank-Wolfe method and projected gradient descent, for privacy and heavy-tailed robustness. Our approaches are as follows: For the Frank-Wolfe method, our technique is based on a tailored learning rate and a uniform lower bound on the gradient of the $\ell_2$-norm over the constraint set. For accelerating projected gradient descent, we use the popular variant based on Nesterov's momentum, and we optimize our objective over $\mathbb{R}p$. These accelerations reduce iteration complexity, translating into stronger statistical guarantees for empirical and population risk minimization. Our analysis covers three settings: non-random data, random model-free data, and parametric models (linear regression and generalized linear models). Methodologically, we approach both privacy and robustness based on noisy gradients. We ensure differential privacy via the Gaussian mechanism and advanced composition, and we achieve heavy-tailed robustness using a geometric median-of-means estimator, which also sharpens the dependency on the dimension of the covariates. Finally, we compare our rates to existing bounds and identify scenarios where our methods attain optimal convergence.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.