Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 84 tok/s
Gemini 2.5 Pro 37 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 86 tok/s Pro
GPT OSS 120B 468 tok/s Pro
Kimi K2 229 tok/s Pro
2000 character limit reached

RACE-Align: Retrieval-Augmented and Chain-of-Thought Enhanced Preference Alignment for Large Language Models (2506.02726v1)

Published 3 Jun 2025 in cs.CL, cs.AI, and cs.LG

Abstract: LLMs struggle with accuracy, domain-specific reasoning, and interpretability in vertical domains. Traditional preference alignment methods like Reinforcement Learning from Human Feedback (RLHF) and Direct Preference Optimization (DPO) often overlook the underlying knowledge sources and reasoning logic. This paper introduces RACE-Align (Retrieval-Augmented and Chain-of-Thought Enhanced Alignment), a novel framework designed to address these limitations. RACE-Align systematically constructs a binary preference dataset incorporating external knowledge support and explicit Chain-of-Thought (CoT) reasoning, then aligns LLMs using the DPO algorithm. The core innovation lies in its preference data construction strategy: it integrates AI-driven retrieval for factual grounding, enhancing knowledgeability and accuracy, and emphasizes the optimization of domain-specific CoT, treating the reasoning process itself as a key preference dimension. A multi-stage, AI-driven refinement pipeline cost-effectively generates these preference pairs. Experimental validation in Traditional Chinese Medicine (TCM) using Qwen3-1.7B as the base model demonstrates that RACE-Align significantly outperforms the original base model and a model fine-tuned only with Supervised Fine-Tuning (SFT). Improvements were observed across multiple dimensions, including answer accuracy, information richness, application of TCM thinking patterns, logicality and depth of reasoning, and interpretability. These findings suggest RACE-Align offers an effective pathway to enhance LLMs' knowledge application, reasoning reliability, and process transparency in complex vertical domains.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.