Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 82 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 17 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 468 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

MINT: Multimodal Instruction Tuning with Multimodal Interaction Grouping (2506.02308v3)

Published 2 Jun 2025 in cs.LG and cs.AI

Abstract: Recent advances in multimodal foundation models have achieved state-of-the-art performance across a range of tasks. These breakthroughs are largely driven by new pre-training paradigms that leverage large-scale, unlabeled multimodal data, followed by instruction fine-tuning on curated labeled datasets and high-quality prompts. While there is growing interest in scaling instruction fine-tuning to ever-larger datasets in both quantity and scale, our findings reveal that simply increasing the number of instruction-tuning tasks does not consistently yield better performance. Instead, we observe that grouping tasks by the common interactions across modalities, such as discovering redundant shared information, prioritizing modality selection with unique information, or requiring synergistic fusion to discover new information from both modalities, encourages the models to learn transferrable skills within a group while suppressing interference from mismatched tasks. To this end, we introduce MINT, a simple yet surprisingly effective task-grouping strategy based on the type of multimodal interaction. We demonstrate that the proposed method greatly outperforms existing task grouping baselines for multimodal instruction tuning, striking an effective balance between generalization and specialization.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.