Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 83 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 92 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 462 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

AutoMixAlign: Adaptive Data Mixing for Multi-Task Preference Optimization in LLMs (2506.00569v1)

Published 31 May 2025 in cs.LG

Abstract: When aligning LLMs, their performance on various tasks (such as being helpful, harmless, and honest) depends heavily on the composition of their training data. However, selecting a data mixture that achieves strong performance across all tasks is challenging. Existing approaches rely on large ablation studies, heuristics, or human intuition, but these can be prohibitively expensive and suboptimal. We study this problem in the setting of preference optimization via DPO and introduce AutoMixAlign (AMA), a theoretically-grounded algorithm that adaptively mixes datasets during training to balance performance across tasks. AMA first trains \textit{specialist models} for each task to determine losses that correspond to strong task performance. Then, it trains a generalist model using a novel minimax optimization that prioritizes tasks for which generalist model losses deviate most from specialist model losses. To optimize this problem, we propose two algorithms: (1) AMA-R, which adaptively reweights the objective to prioritize tasks, and (2) AMA-S, which adaptively adjusts how much data is sampled from each task to prioritize tasks. Both algorithms achieve a convergence rate of $O(1/\sqrt{T})$ in the convex case. AMA-R's convergence result follows from Sagawa et al. (2019), and we provide a convergence proof for AMA-S using online learning techniques such as EXP3. We evaluate AMA on several multitask alignment setups and find that AMA outperforms the standard alignment approach -- which simply optimizes the total loss across all tasks -- and also outperforms model merging methods.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube