Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 52 tok/s
Gemini 2.5 Pro 55 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 216 tok/s Pro
GPT OSS 120B 468 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

DiffPINN: Generative diffusion-initialized physics-informed neural networks for accelerating seismic wavefield representation (2506.00471v1)

Published 31 May 2025 in physics.geo-ph, cs.LG, and physics.comp-ph

Abstract: Physics-informed neural networks (PINNs) offer a powerful framework for seismic wavefield modeling, yet they typically require time-consuming retraining when applied to different velocity models. Moreover, their training can suffer from slow convergence due to the complexity of of the wavefield solution. To address these challenges, we introduce a latent diffusion-based strategy for rapid and effective PINN initialization. First, we train multiple PINNs to represent frequency-domain scattered wavefields for various velocity models, then flatten each trained network's parameters into a one-dimensional vector, creating a comprehensive parameter dataset. Next, we employ an autoencoder to learn latent representations of these parameter vectors, capturing essential patterns across diverse PINN's parameters. We then train a conditional diffusion model to store the distribution of these latent vectors, with the corresponding velocity models serving as conditions. Once trained, this diffusion model can generate latent vectors corresponding to new velocity models, which are subsequently decoded by the autoencoder into complete PINN parameters. Experimental results indicate that our method significantly accelerates training and maintains high accuracy across in-distribution and out-of-distribution velocity scenarios.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube