Fermionic Magic Resources of Quantum Many-Body Systems (2506.00116v1)
Abstract: Understanding the computational complexity of quantum states is a central challenge in quantum many-body physics. In qubit systems, fermionic Gaussian states can be efficiently simulated on classical computers and hence can be employed as a natural baseline for evaluating quantum complexity. In this work, we develop a framework for quantifying fermionic magic resources, also referred to as fermionic non-Gaussianity, which constitutes an essential resource for universal quantum computation. We leverage the algebraic structure of the fermionic commutant to define the fermionic antiflatness (FAF)-an efficiently computable and experimentally accessible measure of non-Gaussianity, with a clear physical interpretation in terms of Majorana fermion correlation functions. Studying systems in equilibrium, we show that FAF detects phase transitions, reveals universal features of critical points, and uncovers special solvable points in many-body systems. Extending the analysis to out-of-equilibrium settings, we demonstrate that fermionic magic resources become more abundant in highly excited eigenstates of many-body systems. We further investigate the growth and saturation of FAF under ergodic many-body dynamics, highlighting the roles of conservation laws and locality in constraining the increase of non-Gaussianity during unitary evolution. This work provides a framework for probing quantum many-body complexity from the perspective of fermionic Gaussian states and opens up new directions for investigating fermionic magic resources in many-body systems. Our results establish fermionic non-Gaussianity, alongside entanglement and non-stabilizerness, as a resource relevant not only to foundational studies but also to experimental platforms aiming to achieve quantum advantage.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.