Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 59 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 40 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 104 tok/s Pro
Kimi K2 195 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

On the Impact of Monte Carlo Statistical Uncertainty on Surrogate-based Design Optimization (2506.00018v1)

Published 19 May 2025 in stat.AP and physics.comp-ph

Abstract: In multi-objective design tasks, the computational cost increases rapidly when high-fidelity simulations are used to evaluate objective functions. Surrogate models help mitigate this cost by approximating the simulation output, simplifying the design process. However, under high uncertainty, surrogate models trained on noisy data can produce inaccurate predictions, as their performance depends heavily on the quality of training data. This study investigates the impact of data uncertainty on two multi-objective design problems modelled using Monte Carlo transport simulations: a neutron moderator and an ion-to-neutron converter. For each, a grid search was performed using five different tally uncertainty levels to generate training data for neural network surrogate models. These models were then optimized using NSGA-III. The recovered Pareto-fronts were analyzed across uncertainty levels, and the impact of training data quality on optimization outcomes was quantified. Average simulation times were also compared to evaluate the trade-off between accuracy and computational cost. Results show that the influence of simulation uncertainty is strongly problem-dependent. In the neutron moderator case, higher uncertainties led to exaggerated objective sensitivities and distorted Pareto-fronts, reducing normalized hypervolume. In contrast, the ion-to-neutron converter task was less affected--low-fidelity simulations produced results similar to those from high-fidelity data. These findings suggest that a fixed-fidelity approach is not optimal. Surrogate models can still recover the Pareto-front under noisy conditions, and multi-fidelity studies can help identify the appropriate uncertainty level for each problem, enabling better trade-offs between computational efficiency and optimization accuracy.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com