Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 78 tok/s
Gemini 2.5 Pro 43 tok/s Pro
GPT-5 Medium 23 tok/s
GPT-5 High 29 tok/s Pro
GPT-4o 93 tok/s
GPT OSS 120B 470 tok/s Pro
Kimi K2 183 tok/s Pro
2000 character limit reached

Speech as a Multimodal Digital Phenotype for Multi-Task LLM-based Mental Health Prediction (2505.23822v1)

Published 28 May 2025 in cs.CL and cs.MM

Abstract: Speech is a noninvasive digital phenotype that can offer valuable insights into mental health conditions, but it is often treated as a single modality. In contrast, we propose the treatment of patient speech data as a trimodal multimedia data source for depression detection. This study explores the potential of LLM-based architectures for speech-based depression prediction in a multimodal regime that integrates speech-derived text, acoustic landmarks, and vocal biomarkers. Adolescent depression presents a significant challenge and is often comorbid with multiple disorders, such as suicidal ideation and sleep disturbances. This presents an additional opportunity to integrate multi-task learning (MTL) into our study by simultaneously predicting depression, suicidal ideation, and sleep disturbances using the multimodal formulation. We also propose a longitudinal analysis strategy that models temporal changes across multiple clinical interactions, allowing for a comprehensive understanding of the conditions' progression. Our proposed approach, featuring trimodal, longitudinal MTL is evaluated on the Depression Early Warning dataset. It achieves a balanced accuracy of 70.8%, which is higher than each of the unimodal, single-task, and non-longitudinal methods.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.