Speech as a Multimodal Digital Phenotype for Multi-Task LLM-based Mental Health Prediction (2505.23822v1)
Abstract: Speech is a noninvasive digital phenotype that can offer valuable insights into mental health conditions, but it is often treated as a single modality. In contrast, we propose the treatment of patient speech data as a trimodal multimedia data source for depression detection. This study explores the potential of LLM-based architectures for speech-based depression prediction in a multimodal regime that integrates speech-derived text, acoustic landmarks, and vocal biomarkers. Adolescent depression presents a significant challenge and is often comorbid with multiple disorders, such as suicidal ideation and sleep disturbances. This presents an additional opportunity to integrate multi-task learning (MTL) into our study by simultaneously predicting depression, suicidal ideation, and sleep disturbances using the multimodal formulation. We also propose a longitudinal analysis strategy that models temporal changes across multiple clinical interactions, allowing for a comprehensive understanding of the conditions' progression. Our proposed approach, featuring trimodal, longitudinal MTL is evaluated on the Depression Early Warning dataset. It achieves a balanced accuracy of 70.8%, which is higher than each of the unimodal, single-task, and non-longitudinal methods.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.