Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 71 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 81 tok/s Pro
Kimi K2 172 tok/s Pro
GPT OSS 120B 434 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Leveraging large language models and traditional machine learning ensembles for ADHD detection from narrative transcripts (2505.21324v1)

Published 27 May 2025 in cs.CL

Abstract: Despite rapid advances in LLMs, their integration with traditional supervised ML techniques that have proven applicability to medical data remains underexplored. This is particularly true for psychiatric applications, where narrative data often exhibit nuanced linguistic and contextual complexity, and can benefit from the combination of multiple models with differing characteristics. In this study, we introduce an ensemble framework for automatically classifying Attention-Deficit/Hyperactivity Disorder (ADHD) diagnosis (binary) using narrative transcripts. Our approach integrates three complementary models: LLaMA3, an open-source LLM that captures long-range semantic structure; RoBERTa, a pre-trained transformer model fine-tuned on labeled clinical narratives; and a Support Vector Machine (SVM) classifier trained using TF-IDF-based lexical features. These models are aggregated through a majority voting mechanism to enhance predictive robustness. The dataset includes 441 instances, including 352 for training and 89 for validation. Empirical results show that the ensemble outperforms individual models, achieving an F$_1$ score of 0.71 (95\% CI: [0.60-0.80]). Compared to the best-performing individual model (SVM), the ensemble improved recall while maintaining competitive precision. This indicates the strong sensitivity of the ensemble in identifying ADHD-related linguistic cues. These findings demonstrate the promise of hybrid architectures that leverage the semantic richness of LLMs alongside the interpretability and pattern recognition capabilities of traditional supervised ML, offering a new direction for robust and generalizable psychiatric text classification.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube