Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 99 tok/s
Gemini 2.5 Pro 43 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 110 tok/s Pro
Kimi K2 207 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Complex System Diagnostics Using a Knowledge Graph-Informed and Large Language Model-Enhanced Framework (2505.21291v1)

Published 27 May 2025 in cs.AI

Abstract: In this paper, we present a novel diagnostic framework that integrates Knowledge Graphs (KGs) and LLMs to support system diagnostics in high-reliability systems such as nuclear power plants. Traditional diagnostic modeling struggles when systems become too complex, making functional modeling a more attractive approach. Our approach introduces a diagnostic framework grounded in the functional modeling principles of the Dynamic Master Logic (DML) model. It incorporates two coordinated LLM components, including an LLM-based workflow for automated construction of DML logic from system documentation and an LLM agent that facilitates interactive diagnostics. The generated logic is encoded into a structured KG, referred to as KG-DML, which supports hierarchical fault reasoning. Expert knowledge or operational data can also be incorporated to refine the model's precision and diagnostic depth. In the interaction phase, users submit natural language queries, which are interpreted by the LLM agent. The agent selects appropriate tools for structured reasoning, including upward and downward propagation across the KG-DML. Rather than embedding KG content into every prompt, the LLM agent distinguishes between diagnostic and interpretive tasks. For diagnostics, the agent selects and executes external tools that perform structured KG reasoning. For general queries, a Graph-based Retrieval-Augmented Generation (Graph-RAG) approach is used, retrieving relevant KG segments and embedding them into the prompt to generate natural explanations. A case study on an auxiliary feedwater system demonstrated the framework's effectiveness, with over 90% accuracy in key elements and consistent tool and argument extraction, supporting its use in safety-critical diagnostics.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.