Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 52 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 192 tok/s Pro
GPT OSS 120B 454 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Enhancing Adversarial Robustness of Vision Language Models via Adversarial Mixture Prompt Tuning (2505.17509v1)

Published 23 May 2025 in cs.CV

Abstract: Large pre-trained Vision LLMs (VLMs) have excellent generalization capabilities but are highly susceptible to adversarial examples, presenting potential security risks. To improve the robustness of VLMs against adversarial examples, adversarial prompt tuning methods are proposed to align the text feature with the adversarial image feature without changing model parameters. However, when facing various adversarial attacks, a single learnable text prompt has insufficient generalization to align well with all adversarial image features, which finally leads to the overfitting phenomenon. To address the above challenge, in this paper, we empirically find that increasing the number of learned prompts can bring more robustness improvement than a longer prompt. Then we propose an adversarial tuning method named Adversarial Mixture Prompt Tuning (AMPT) to enhance the generalization towards various adversarial attacks for VLMs. AMPT aims to learn mixture text prompts to obtain more robust text features. To further enhance the adaptability, we propose a conditional weight router based on the input adversarial image to predict the mixture weights of multiple learned prompts, which helps obtain sample-specific aggregated text features aligning with different adversarial image features. A series of experiments show that our method can achieve better adversarial robustness than state-of-the-art methods on 11 datasets under different experimental settings.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.