Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 81 tok/s
Gemini 2.5 Pro 57 tok/s Pro
GPT-5 Medium 31 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 104 tok/s Pro
GPT OSS 120B 460 tok/s Pro
Kimi K2 216 tok/s Pro
2000 character limit reached

Solving MDPs with LTLf+ and PPLTL+ Temporal Objectives (2505.17264v1)

Published 22 May 2025 in cs.FL and cs.LO

Abstract: The temporal logics LTLf+ and PPLTL+ have recently been proposed to express objectives over infinite traces. These logics are appealing because they match the expressive power of LTL on infinite traces while enabling efficient DFA-based techniques, which have been crucial to the scalability of reactive synthesis and adversarial planning in LTLf and PPLTL over finite traces. In this paper, we demonstrate that these logics are also highly effective in the context of MDPs. Introducing a technique tailored for probabilistic systems, we leverage the benefits of efficient DFA-based methods and compositionality. This approach is simpler than its non-probabilistic counterparts in reactive synthesis and adversarial planning, as it accommodates a controlled form of nondeterminism (``good for MDPs") in the automata when transitioning from finite to infinite traces. Notably, by exploiting compositionality, our solution is both implementation-friendly and well-suited for straightforward symbolic implementations.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube