Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 82 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 18 tok/s
GPT-5 High 12 tok/s Pro
GPT-4o 96 tok/s
GPT OSS 120B 467 tok/s Pro
Kimi K2 217 tok/s Pro
2000 character limit reached

Power law $α$-Starobinsky inflation (2505.16853v1)

Published 22 May 2025 in astro-ph.CO, gr-qc, hep-ph, and hep-th

Abstract: In this work we consider a generalization of Starobinsky inflation obtained by combining power law ($R\beta$), and $\alpha$-Starobinsky inflation ($E$-model). The Einstein frame potential for this model is that of power law Starobinsky inflation modified by a parameter $\alpha$ in the exponential. After computing power spectra for scalar and tensor perturbations numerically, we perform MCMC analysis to put constraints on the potential parameter $\alpha$, $\beta$ and $M$, and the number of e-foldings $N_{pivot}$ during inflation, using Planck-2018, BICEP/Keck (BK18) and other LSS observations. We find $\log_{10}\alpha= 0.37{+0.82}_{-0.85}$, $\beta = 1.969{+0.020}_{-0.023}$, $M=\left(3.54{+2.62}_{-1.73}\right)\times 10{-5}$ and $N_{pivot} = 47\pm{10}$. We compute the Bayesian evidences for our proposed model, power law Starobinsky inflation, $\alpha$-Starobinsky inflation and Starobinsky inflation. Considering the Starobinsky model as the base model, we calculate the Bayes factor and find that our proposed model is preferred by the CMB and LSS observations.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.